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There is much confusion and error in published treatments of data for multiple binding
of ligands (e.g., substrates) by proteins (e.g., enzymes). There is a widespread impression
that if the equilibrium binding, r, of ligand, A, by a protein with = sites can be fitted to an
equation with two hyperbolic terms, i.e.,

nako(A)

. ngko(A)
1 + k.(A)

ﬂ+ = i
T i kA Netme=m

then k, and k, are always the intrinsic binding constants for two sets of sites. Such a
conclusion is often incorrect. For example, in many cases, the protein is constituted of
identical protomers with initially identical sites for binding ligands, and yet graphical
representations of the binding data appear to behave as if the sites are partitioned between
two clagsses. Although the use of a linear combination of hyperbolic terms to represent
binding of ligands by macromolecules always yields empirical parameters k, kg . . . ky,
they cannot correspond to site binding constants when there are interactions between
sites. In some circumstances their values may even be imaginary, complex numbers. On the
other hand, stoichiometric binding constants can be assigned unambiguously without making
any assumption regarding the nature of the interactions among binding sites. These
principles are illustrated concretely by analyses of binding measurements for several
different proteins containing two to six sites.

Ligand binding by biological macro-
molecules plays a vital role in a host of
biological functions: enzymic reactions and
control mechanisms; receptor interactions
with neurotransmitters, hormones, and
other effectors; immunoglobulin—antigen
interactions; control of gene expression,
transport, ete. To understand the depend-
ence of a biological response on the concen-
tration of effector, one must have, as a
foundation, information on the extent of
binding of the effector. Binding data are
most direetly represented in a graph of
moles of bound ligand per mole of macro-
molecular acceptor, r, as a function of free
ligand concentration, A, the latter being
presented on a logarithmic scale if it spans
a wide range. Figure 1 illustrates such a
plot for data (1) on the binding of carbamyl
phosphate by aspartate transcarbamylase,
a very widely studied allosteric enzyme.
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From such a graph one can read explicitly
how much enzyme-substrate complex is
present at a given concentration of free
ligand.

In connection with structural questions
about oligomeric systems, it has been
tempting to use binding data to try to
estimate the total number of accessible sites
n on the receptor. In essence this corres-
ponds to finding » at infinite free concen-
tration of A. Even when a substantial
number of experimental points has been
accumulated, as in Fig. 1, a definitive
plateau in 7, at high (A) is often not
discernible. There is no evidence from these
data in themselves that one is approaching
saturation of the receptor macromolecule.
Nevertheless, if the same data are used for
one of the reciprocal transform graphs, for
example, r/(A) vs 7, one can bend
perception to wish and choose an intercept
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F1G. 1. Binding of carbamyl phosphate by aspartate transcarbamylase (1). Original data kindly

supplied by Dr. J. Rosenbusch.

on the r-axis at a value that corresponds with
one’s predisposition. For example, if the
data in Fig. 1, where it is obvious that n
is indeterminate, are transformed to the
plot of Fig. 2 with the abscissa explicitly
numerically labeled, then one can readily
be enticed into drawing an intercept at
r = 6 (the known number of protomers in
aspartate transcarbamylase). On the other
hand, if the coordinates are kept double
blind (Fig. 2A), the indeterminacy of n is
manifest. Thus , the » versus log (4) plot
provides the best graph for ascertaining the
saturation level, if it can be educed from
the available data.

A concave curve such as that in Fig. 2
also frequently generates another miscon-
ception—the inference that the protein
provides two different classes of sites for
binding of ligand. With this presumption,
binding data are correlated quantitatively
by means of an algebraic expression
containing two hyperbolic terms, one for
each class of independent sites, and the two
binding parameters are purported to be the
respective site binding constants. For an
oligomer constituted of % initially identical
protomers, it is unlikely that the % binding
sites for a specific ligand are distributed
between two different independent classes.
Curvature in a graph such as Fig. 2 is
commonly a manifestation of interactions
between initially identical sites. Under
these circumstances, assignments of site

binding constants are almost universally
incorrect.

These principles will be illustrated
concretely by analyses of binding measure-
ments for several different proteins con-
taining two to six sites. For this purpose,
we must first state explicitly the general
expressions for correlating binding data.

GENERAL FORMS OF EXPRESSION
FOR LIGAND BINDING

As has been described recently (2, 3), the
multiple equilibria between ligands bound
to a macromolecule and free ligand in the
bulk solvent can be formulated quantitatively
by two different general approaches. One of
these, the thermodynamic treatment, de-
fines stoichiometric equilibrium constants,
K;, for the formation of the sequential
stoichiometric macromolecule-ligand spe-
cies PA,, PA,, ete., appearing in the
equilibria between protein P and ligand A:

PAi..1+A=PAi; Kl:—gm;).[l]
(PA;-,(A)

The alternative formulation concentrates on
individual binding sites on the macromole-
cule, and defines a site equilibrium constant,
k;, for the equilibrium at each such site ;P:

P +A=,PA; k= GPA)

=——. |2
GPXA) o
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Fi16. 2. Single reciproeal plot of data for binding of carbamyl phosphate by aspartate transcarbamylase.
In A, numbers have been omitted from both coordinates to illustrate the indeterminacy of any

intercept on the abscissa.

An important complication that arises in
the site approach, however, is that the
affinity of a particular site may be altered
if molecules are bound at other sites. In
such a situation, more than one site binding
constant is needed to describe the behavior
at each specific site.

In experimental studies of binding, the
quantity normally calculated is r, the moles
of bound ligand per mole of total protein.
Since the meaning of the various binding
constants is often misinterpreted, it is
instructive to delineate how » can be
formulated in the two different approaches.

In the stoichiometric formulation, the

concentration of bound ligand is determined
by calculating the concentration of each
stoichiometric species (sum of columns in
Fig. 3) and multiplying the latter by the
coefficient corresponding to its ligand-
protein stoichiometry. Following insertion
of the appropriate equilibrium constants
from Eq. [1], one obtains

r= KI(A) + 2K1K2(A)2 + .-
1+ K(A) + K, Ky(A? + -

(3]

As illustrated in Fig. 3, the concentration
of the stoichiometric species PA; is the sum
of concentrations for all the site species
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Fic. 3. Comparison of species whose concentrations are summed in stoichiometric and site
formulations, respectively. (A) Divalent receptor; (B) trivalent receptor.

with 7 bound molecules regardless of which
specific sites are occupied. Consequently,
the values of K; do not directly provide
information about the individual binding
affinities of the specific sites, and this is
often the information of primary structural
importance. Nevertheless, as will be illus-
trated in this paper, some information about
the individual sites can often be obtained
by examination of relations between stoi-
chiometric and site constants under dif-
ferent circumstances.

The site approach, in contrast to the
stoichiometric one, focuses attention on the
individual sites. To calculate r, the concen-
tration of ligand bound at each specific site
is first determined by summing over all site
species with that particular site occupied
(i.e., summing from left to right in Fig. 3).
These values are then added for all of the
sites to determine the total concentration
of bound ligand. In the simple case where
the sites have fixed (although different)
affinities, i.e., where k; does not change with

the extent of occupancy of other sites by
ligand, the well-known expression for r is
obtained (4-8):
;= k(A)
1+ k,(4)

k1(A)
1+ ko (A)

(4]

Clearly, for this simple situation, the site
approach provides direct information about
the microscopic aspects of binding.

Unfortunately, Eq. [4] is also widely used
for situations in which it is not applicable,
i.e., when the site affinities do change with
the extent of occupancy. The site approach
can be generalized (3) to give an equation for
r that is valid even for interacting sites but
the number of site binding constants that
must be specified increases dramatically, far
beyond the number provided for by Eq. [4]
(which is one for each site). Hence, Eq. [4]
completely collapses as a framework for
describing binding equilibria.

Despite these difficulties, there has been
a general tendency to analyze binding data
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with an equation containing a linear com-
bination of hyperbolic terms—superficially
similar to Eq. [4]—with the number of
terms not exceeding the total number of
binding sites:

k&) ko(A)
1+ k(A) 1+ kg(A)

Interestingly enough, even though Eq. [4]
is valid only for a very special case, Eq. [5]
in its most general form (maximum number
of terms, with the parameters k,, kg, . . -
permitted to be complex numbers) contains
sufficient parameters to fit the binding
data for any binding system, with or
without interactions between sites (6-11).
Nevertheless, the values obtained for the
parameters ko, kg, . . . do not in general
correspond to site binding constants.

(5]

DIVALENT (TWO-SITE) SYSTEM

For this situation, the site and stoichio-
metric equilibrium constants are defined in
Chart I. Subscripts to the left of P designate
the site(s), subscripts to the right of A
represent the moles of bound ligand per
mole of protein in that specific complex. The
free ligand A in each equilibrium is not
shown explicitly in order to simplify the
illustration.

For the divalent system, the stoichio-
metric constants, K; and K,, suffice
to completely represent the quantitative
binding data in terms of Eq. [3]. Moreover,
simple manipulation shows that these
constants can be related to the three

CHART 1
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independent site binding constants
Kl = kl + k2,
_ kikus
ki + ks

It is not possible, however, to use the three
site-binding constants, k., ks, k2 (0F k2,1)
with Eq. [4] to represent the binding data;
this can readily be seen from the fact that
such an equation requires that » — 3 as
(A) > », but r can never exceed the
stoichiometric valency, in this case 2.

One can still fit binding data to Eq. [5]
with two terms, and two parameters
k., and ks With some moderate algebraic
manipulation (comparison of polynomial
forms of Eq. [3], for a divalent system, and
of Eq. [5] with two terms), one can obtain
relations for k, and k; in terms of the
stoichiometric binding constants:

ka = 17/2K1 + %(K% - 4K1K2)1’2’
ko = %K, T %(K? — 4K, K,)".

(6]
[7]

2

(8l
(9]

It should be noted immediately that when
K, > K, which would be true if affinities
increase with extent of occupancy (2),
k. and k; have complex values.

It is also possible to derive expressions
for k, and k; in terms of the site binding
constants:

ko = %k + ks)

i 1/2[(k1 + k2)2 - 4k1k1,2]1l2, [10]
kg = Y%k, + k)
* 1/2[(k1 + k2)2 - 4k1k1,2]1/2. [11]

These provide explicit relationships between
the two different types of constants.
Nevertheless, k, is not identifiable with
any specific site constant, nor is k.

One special situation of interest is that
in which both sites are initially identical
in affinities,

ky =k, =k,

and the second stage in occupancy is also
characterized by identical site affinities, but
different from the first stage, i.e.,

k1,2 = k2,1 = ky.

[12]

[13]
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FiG. 4. Affinity profiles for divalent system.

Under these circumstances, one can show
readily (from Egs. [6] and [7]) that the
stoichiometric binding constants will auto-
matically lead to the sequential stage
affinities k; and k; that characterize the
sequential behavior of the sites:

K, = 2k, [14]
K2 = %ku. [15]

Here again, although %, and k5 would have
defined values,

ko =k + (k} — "?Ikn)l/2 [16]
kB =k — (kt - klkn)llﬂy [17]

k. cannot be assigned to k; and k; cannot be
assigned to ky (nor vice versa).

Affinity profiles (2, 3), graphs of nor-
malized stoichiometric binding constants in
the form of iK; versus i, for a divalent
system reflect the various types of possible
relationships among binding sites. For the
ideal case of identical, noninteracting sites
(Fig. 4), the successive K,; values are
linearly related in a graph of ¢K; versus
(2, 3). For the divalent system in general,
the second stoichiometric parameter, 2K,,
may be above or below the ideal line. If
above, the binding affinity is accentuated
with increasing extent of occupancy. If
below three different causes are possible:
(i) the two specific sites have different but

fixed affinities; (ii) site affinities are initially
identical but decrease as soon as one site
is occupied; (iii) the two specific sites initially
have different affinities but these decrease
(or they may even increase under some
circumstances!) as soon as one site is
occupied. All three possibilities lead to the
same form of affinity profile. Hence, in a
two-site system, it is not possible to
distinguish “negative cooperativity” from

! These three cases can be scrutinized quantitatively
by noting that for a two-site system only one interac-
tion parameter, I, is needed, since

Kyalks = koolky =1 + 1.

If the sites are indexed so that k; = k,, then « ecan be
defined as

a=(ks/ky) —1=0.

Simple manipulation of these relations and Eqgs. [6]
and [7] shows that the second point in an affinity
profile falls above, on, or below the ideal line when
the quantity

a2

1—4(1+a)

is positive, zero, or negative, respectively. Since the
second term in this quantity is always zero or posi-
tive, the second point in an affinity profile will fall
below the ideal line when

a2

41(1w—az)>I
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fixed but different site affinities with no
cooperativity whatsoever. Furthermore, it
is even possible to have “positive coopera-
tivity” between initially nonidentical sites
and obtain an affinity profile, or a Scatchard
plot (11), below the linear one for the
ideal case.

An example of actual behavior in a
divalent system is illustrated by leucine—
isopropylmalate synthase (12). The stoi-
chiometric constants K, and K,, caleulated
by the computational procedures of Fletcher
et al. (9, 11) from binding data supplied by
Teng-Leary and Kohlhaw (12), are

K, = 4.8 x 10¢,
K, = 2.5 x 105,

It is immediately evident from an affinity
profile (Fig. 5A) that after either of the first
two sites is occupied, the affinity in the
second sequential step must be markedly
accentuated.

If one analyzes the binding data in terms
of a linear combination of hyperbolic terms,
Eq. [5], then the best values of the
parameters k, and k for binding of leucine
by isopropylmalate synthase are

30
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Fic. 5. Affinity profiles for binding of leucine by
isopropylmalate synthase (A) and for binding of iron
by ovotransferrin (B).
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ke = 2.4x10*+1.1 X105V -1,
kg =24x10t¥ 1.1 x10°V-1.

Thus, k, and ks are complex numbers,
members of a conjugate pair. Their
imaginary values clearly demonstrate that
neither k&, nor k, can be identified with any
one of the site binding constants of
isopropylmalate synthase.

To assign values to the site binding
constants we need additional information.
In view of what is known of the structure
of this particular enzyme, it can be
reasonably assumed that both sites in the
original nonliganded protein are identical.
Under these circumstances Eqgs. [12] and
[13] define the binding behavior, and
Egs. [14] and [15] can be used to evaluate
the sequential stage affinities:

ky = 0.24 x 10%,
k[[ = 5.0 X 105.

The first site binding constant then has

the value
k= 0.24 x 108

(see Eq. [12]); however, k, is not equal to
5.0 x 10°. After site 1 is occupied (see
Eq. [13])

k., = 5.0 x 10%
Correspondingly,

ko = 0.24 X 10°

kyi = 5.0 x 10°

(see Egs. [12] and [13]).

A complementary example is illustrated
in Fig. 5B, an affinity profile for the binding
of ferric ion by divalent ovotransferrin (13).
Here K, is 23 and K, is 0.57. Thus, after
either of the first two sites is occupied, the
affinity of the residual site, whichever it is,
is markedly decreased. Furthermore, for
this iron—ovotransferrin system k., = 22.4
and k; = 0.6; neither of these values is
equal to that of any of the site binding
constants, whose values are (13), k, = 10,
ko = 13, k.0 = 1.3, k,, = 1. Ovotransferrin
binding of iron falls into the class often
called “half-of-sites” reactivity, i.e., the
first iron is taken up by either of the
two (almost equivalent) unoccupied sites
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and then the affinity of the residual site is
markedly reduced, regardless of which one
it was in the totally unoccupied protein. It
should be emphasized, therefore, that if
k.and kg are used, with Eq. [5], to correlate
the binding data in other half-of-sites
systems, the values obtained for these
parameters are nof the site binding con-
stants at any stage of uptake of ligand.

TRIVALENT (THREE-SITE) SYSTEM

The appropriate site and stoichiometric
constants for this situation in its most
general form are defined in Chart II.

For the trivalent system, the three
stoichiometric constants can be related (3)
to (seven) independent site binding constants
by the equations

Kl = kl + k2 + k3, [18]

K2 - k1k1,2 + klk1,3 + k2k2,3 : [19]
ky + ky + kg

K3 — k lk 1,2k1,2,3 [20]

kikio + kikvs + kokag .

The variation of r with A can be
represented without any ambiguity by the
stoichiometric binding equation (3) with
terms up to and including the eubic in both
numerator and denominator. A computer
fit can then be used with any specific set of
experimental binding data to obtain best
values of the stoichiometric constants K,
K,, and K,;. With known values of the
stoichiometric constants, however, there is
no way to specify the site binding constants
since the seven independent latter param-

u

K2
PA, ——— PA,

CHART II
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eters cannot be fixed by three known
experimental constants. Furthermore, a
seven-term equation in the format of Eq. [4]
cannot be used for it would imply that
r — Tas A — «, whereas actually » — 3.

For special cases, of general interest,
site binding affinities can be assigned once
the stoichiometric constants have been
evaluated. For example, if a trimeric
protein is constituted of identical subunits,
all three subunits should have identical
initial affinities for (substrate) ligand, i.e.,

kl = kg = kg = kl' [21]

One possible mode of interaction between
sites could result in a changed affinity for
the second sequential stage in uptake of
ligand converting PA, to PA,:

kl,Z = k1,3 = kz,l = k2,3
=k, = k3o =ky. [22]

Let us assume that uptake of a third ligand
occurs with the same affinity as in the
second stoichiometric step, so that

k1,2,3 = k2,3,1 = k3,1,2 = k. [23]

Under these circumstances it follows from
Eqgs. [18]-[20] that

Kl = 3k1, [24]
K, =ky, [25]
K3 = %k[[. [261

The affinity profile for ligand binding in
this situation is illustrated in Fig. 6. Two
of many possible profiles are shown by the
solid lines, one in which the affinity in the
second stoichiometric step is accentuated,
the other in which it is attenuated. In both
cases, the line connecting¢ = 2, 3, and 4 is
linear, that is, the corresponding stoichio-
metric constants are related “ideally”
(i.e., by the statistics of the situation only),
as is required by the specifications in
Eqs. [22] and [23].

The stoichiometric binding equation (3)
for the circumstances described by Egs.
[24]-[26] is

3kI(A) + 6kky(A) + 3kiki(A)?

1 + 3k(A) + Bkiky(A)>
+ kikH(A)

[27]
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1

FiG. 6. Affinity profiles for trivalent system.

With two sequential classes of sites such
as those specificed by Eqgs. [21] to [23], one
might be inclined to correlate the binding
data and evaluate the class binding con-
stants by a linear combination of hyper-
bolic terms, i.e., Eq. [5]. Ostensibly one
could write

kA 2kA

and fit this equation to the experimental
data. The coefficient, 2, is used in the second
term to indicate two equal-affinity classes.
Superficially one might think that &, should
be assigned to k, and ks to ky. This is
absolutely incorrect, however. Relations
between the k’s of Eq. [28] and the sequen-
tial class constants can be derived by re-

T TTRA 1+ kA [28]  arranging Eqgs. [27] and [28] into their re-
spective linear polynomial forms:

Stoichiometrie: r + 3(r — DA + 3(r — 2kkyA? + (r — 3k k}A® =0, [29]

Linear hyperbolic: 7 + [(r — Dkg + (r — 2)kg]lA + (r — 3)koksA? = 0. [30]

It is immediately apparent why Eq. [30], and hence [28], fails. First, it lacks the cubic term
in A, and thus (in view of Eq. [29]), requires that k; or k;; always be zero. Furthermore,
even if we restrict ourselves to a comparison of the linear and square terms in Eqgs. [29]

and [30], we find that k, and ks depend on r as well as k; and ky;:

_ 3 . g . (,r _ 2)2 1/2
o= Sk [Tkt =3 k| (311
kﬁzg_(r__l) 1_(_7‘:2[§ L [gklz_g__(f.;z_)i__ klkn}m] ) [32]
(r —2) (r —2)(2 4 r— D@ -3

In other words, k., and ks are not unique;
their values depend on the best-fit criterion
used in the curve-fitting procedure. No mat-
ter what criterion is used, moreover, their
values certainly cannot be identified with
particular site binding constants.

An example of actual behavior in a
tervalent system is available from the
studies of Ridge et al. (14) of the binding
of triffuorodihydroxypropyl phosphonate

(an analog of carbamyl phosphate) by
asparate transcarbamylase. From their
published data we have computed the
following stoichiometrice constants:

K, = 2.89 x 10*,
K, = 0.0295 x 10%,
K, = 0.0875 x 10
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F1G. 7. Affinity profile for binding of trifluorodihy-
droxypropyl phosphonate by aspartate transcarba-
mylase.

The corresponding affinity profile is illus-
trated in Fig. 7. It is immediately evident
that after one site (of the three initially
identical ones) is occupied, the remaining
unoccupied sites drop markedly in affinity.2
In contrast, a small rise in affinity occurs
in the occupation by ligand of the last
open site.

In the initially ligand-free catalytic trimer,
all three monomers are presumably identical.
In view of Eqgs. [18] and [21}, we may
specify, therefore, their initial site binding
constants, all being identical:

kl =k2=k3=k[ = 1/3K1 =O.96 X 104.

No matter which one is occupied in the first
stoichiometric step, each of the residual
open sites then has a changed binding
constant. If Eq. [22] is applicable, then

323

from Eq. [25] we have
kn = 0.0295 x 104,

Finally, if the last open binding site,
whether 1, 2, or 3 originally, has the same
(further changed) affinity, &k, for ligand,
then from Eqgs. [18]-[20] it follows that

k[H = 3K3 = 0.262 X 104.

It should be emphasized, however, that the
values 0.96 x 10%, 0.0295 x 10%, and 0.262
X 10* are not site binding constants for sites
1, 2, and 3, respectively. No single value
of a site-binding constant can be assigned
to site 1 (or 2 or 3). The affinity at each
site depends on whether the other sites are
open or occupied.

Ridge et al. (14) have correlated their
binding data by means of a two-term
hyperbolic equation (5). From their param-
eters we calculate

ko = 2.0 X 104,
ke = 0.057 x 10°,

Despite their rough similarity in magnitude®
to K; or to k; — k, k. and k; should not
be identified with any stoichiometric or site
binding constant.

TETRAVALENT (FOUR-SITE) SYSTEM

The appropriate stoichiometric and site
binding constants for this system are
defined in Chart III.

For a tetravalent system the four stoi-
chiometric constants can be related (3) to
(fifteen) independent site binding constants
by the equations

K =k +ky +ks+Ek,, [33]
K, = kikig + kikig + Rk + kokos + kokoy + kakay ’ [34]
ky + ks + ks + kK,
_ kikiokios + kikiokigs + Kikishisa + kakoskssa [35]
’ kikiy + ik + kb + kokos + kokay + kakay ’
K, kikiski2ski23.4 (36]

2 This behavior could be called “third-of-sites
reactivity,” in analogy to “half-of-sites reactivity.”

k1k1,2k1,2,3 + k1k1,2k1,2,4 + k1k1,3k1,3,4 + k2k2,3k2,3,4

3 In the formulationr = Y {k\(A)[1 + k,(A)]} each
term makes a contribution to v of between 0 and 1.
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CHART III

The variation of » with A can be represented
without any ambiguity by the stoichiometric
binding equation (3) with terms up to and
including (A)* in both numerator and
denominator, as was shown by Adair (15)
for tetravalent hemoglobin.

A special case of interest for a tetravalent
system is one in which the site binding
constants fall into the following categories:

= k2,3 = k2,4 = k3,4 = kr, [37]
k1,2,3 = k1,2,4 = k1,3,4
= k2,3,4 = k1,2,3,4 = kn- [38]

The concentration of (A) at which a particular term
contributes 0.5 is (Ao5)\ = k7% If K, is significantly
larger than the subsequent K;'s, (A,;), can be near
the midpoint in the uptake of the first ligand. This can
result in a k, that is similar in value to K,. A similar
situation can also exist for other constants. The
magnitude and spacing of the K,’s, however, depend
on all the site affinities and any interactions that are
present. Thus, any superficial similarity in values that
may be found is a result of the mathematical form
of the equations and is no justification for identifying
k. with a particular site affinity.

This would be applicable, for example, to a
tetrameric protein with four identical
subunits, arranged perhaps in a tetrahedral
array, in which the first two sequential
stoichiometric steps involved binding by
sites of identical affinity, k|, and in which
the third and fourth sequential steps
reflected identical site affinities of £, where
ku #= k,. Under these circumstances one
can show readily from Eqgs. [33]-[36] that

K, = 4k, [39]
K, = 3%k, [40]
K3 = %ky, [41]
K, = Yaky. [42]

The affinity profile for such a situation is
illustrated in Fig. 8. Two of many possible
specific profiles are shown by the solid
lines, one representing relationships when
the affinity is hyperideal, (ky > k), the
other when it is hypoideal. For each, the
line connecting the two stoichiometrie
steps 1 and 2, or that connecting 3 and 4,
intersects the abscissa at n + 1, and
corresponds to ideal behavior for the cor-
responding stoichiometric constants.

If one were to correlate the binding data
for a system in which equations [37] and
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1
|

Fic. 8. Affinity profiles for a tetrameric system when
initially identical site affinities change after half-of-site
sites are occupied.

[38] are applicable by a linear combination
of hyperbolic terms, (Eq. [5]), the following
two-term equation would be deemed
appropriate:
2k,
po kA | ZkeA [43]
1+ kA 1+ kgA

If this relation is rearranged to a linear
polynomial form it becomes

r+ (r— 2)k, + kg)A
+ (r — DkkgA? = 0. [44]

The stoichiometrie binding equation for the
circumstances at hand can be obtained

k1=k2:k3$k4=k1,
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readily from Eq. [3] combined with the
constraints specified by Eqs. [39]-[42]:
4k A + 12k3A% + 12k, A3
+ 4kZkyAY

T =
1+ 4k;A + 6KkZAZ + 4k A®
+ k33 A

In a linear polynomial format this becomes
r +4(r — Dk A
+ 6(r — 2)kiA? + 4(r — 3)kik A3
+ (r — Dkk% At = 0. [46]

Comparison of Eqs. [44] and [46] shows
that the former is inadequate since it lacks
the A% and A* terms that must be present,
and hence, it requires that k, or k;; always
be zero. Again, if we restrict ourselves to a
comparison of the coefficients of the linear
and square terms in Eqgs. [44] and [46] we
find that k, and &z depend on r as well as on
kyand ky,. Clearly k, and k; do not even have
unique values and certainly cannot be
identified with particular site binding
constants.

Another special case of interest for a
tetravalent ligand—binding protein is that
in which the initially identical subunits
interact in a pairwise fashion, that is, when
one is occupied its unoccupied pair-partner
changes in affinity but the unoccupied pair
is unaffected. To analyze this situation we
index the pairs as 1 and 3, and 2 and 4 (see
Chart III). Initially all sites have identical
site binding constants, which we shall desig-
nate k,. For each site, however, affinity
changes to k; when the partner is occupied.
Specifically, then, we can assign the follow-
ing values to each site binding constant:

[45]

k1,2 = k1,4 = k2,1 = kz,a = ks,z = k3,4 = k4,1 = k4,3 = kly

k1,3,2 = k1,3,4 = k2,4,1 = k2,4,3 = kl,

k1,3 = k2,4 = k3,1 = k4,2 = kn,

[47]

k1,2,3 = k1,2,4 = k1,4,2 = k1,4,3 = k2,3,1 = k2,3,4 = k3,4,1 = k3,4,2 = klb

k1,2,3,4 = k1,3,4,2 = k1,2,4,3 = k2,3,4,1 = kn-

If we define k;, 4,...;, as the site binding constant for site j, when sites ji, js,

“ e jl—l are

occupied then Eqs. [47] can be represented more concisely as follows:

kjlsjz"'jl = kn if
kJ':Jz"'.h = k[ if

|j[ _jml =2
Ijl —jm| #+ 2.

for m betweenland (I — 1),

[48]
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With these specifications, the stoichio-
metric constants (Egs. [33]-[36]) for a
tetramer with pairwise interactions become

K, = 4k,
K2 = kl + I/an,
k
K, = _ Fiden , [49]
kl + I/an
k
K4 = % .

Some affinity profiles for different relative
values of ky/k, are illustrated in Fig. 9.
Pairwise interactions are clearly distin-
guishable from the situation in which
affinity changes after any two of the four
mutually unoccupied sites are filled by
ligand (Fig. 8).

An example of actual behavior of a
tetrameric protein is illustrated by the
binding of acetylcoenzyme A to pyruvate
carboxylase. From experimental data sup-
plied by Frey and Utter (16), we have
computed the following stoichiometric
constants:

K, = 2.08 x 105,

K, = 1.64 x 10*,
K, = 3.67 x 10°,
K, = 1.30 x 10%

F1G. 9. Affinity profiles for a tetrameric system in
which initially identical sites interact in a pairwise
fashion.

KLOTZ AND HUNSTON

iK; (x107)

Fic. 10. Affinity profile for binding of acetyleo-
enzyme A by pyruvate carboxylase.

The corresponding affinity profile is shown
in Fig. 10. Most prominent is the very steep
rise in affinity in the third stoichiometric
stage. To some extent this behavior is
similar to that in Fig. 8 for ky > k;.
Thus, pyruvate carboxylase markedly in-
creases its affinity for acetylcoenzyme A
after any two of the original open sites are
occupied. However, the actual curve,
Fig. 10, does not otherwise fit the model
situation of Fig. 8, but rather reveals some
weaker interactions in steps 2 and 4 of the
stoichiometric stages.

CONCLUSION

For pentavalent or hexavalent systems,
representations analogous to Charts I through
III became much too crowded to illustrate
clearly interrelationships between species
and equilibrium constants. A more concise
chart, such as that shown in Chart IV, does
enable one to visualize the distribution of
the 192 site binding constants among the
successive stoichiometric steps. For a
hexavalent system the six stoichiometric
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CHART IV

constants can be related to the (sixty-three)
independent site constants (3), but the
general equations obtained are much too
cumbersome and the site constants are
indeterminate. When interactions between
sites are not all-pervasive, the general
equations can be reduced to simpler forms.
Several special cases have been examined
recently (17) for a hexavalent system, and
the actual behavior of aspartate transcar-
bamylase has been compared with these
limiting boundary models.

Binding valencies above six are too
unwieldy to describe with specific details,
unless special interactions occur that
simplify the algebra considerably in a
manner similar to that illustrated in the
preceding discussions. Nevertheless, com-
pletely general equations in concise format
have been developed (3) and these make it
possible to extract particular relationships
for a macromolecule with any number of
binding sites.

In any event, the central contribution
of binding measurements to the interpreta-
tion of the influence of an effector on a
biological response is to provide information
on the extent of occupancy of receptor sites
by ligands. Such information is most
explicitly displayed by a graph of moles
bound as a function of the free concentra-
tion of effector on a logarithmic scale
(e.g., Fig. 1). Such a graph provides the
essential molecular information for correla-
tion with macromolecular, cellular, or
physiological behavior.

If one wants an analytical expression to
complement the graphical representation of
extent of binding versus concentration,
then a number of algebraic options are
available. Two of these which have possible
molecular connotations have been elaborated
upon in this discussion. However, if the
parameters obtained are to be associated

with binding constants under all circum-
stances, then only one formulation, the
stoichiometric one (Eq. [3]), is universally
applicable.

The stoichiometric binding constants,
K,, reflect the nature of interactions
between sites with increasing occupancy by
ligand. These can readily be visualized in
affinity profiles, as illustrated for several
examples in this paper. From a molecular
point of view, an important insight revealed
from these examples is that some modifica-
tion in site affinities occurs at each stoichio-
metric step. Contrary to common practice,
there is no basis for interpreting curvature
in reciprocal transform graphs of binding
data as evidence of two classes of sites with
fixed binding constants. The same data lead
to affinity profiles that clearly reveal much
more complicated behavior. These thermo-
dynamic constructs, therefore, provide a
sieve through which any postulated molecu-
lar model must be able to pass.
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